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Abstract

An unbounded system consisting of a plate in contact with a liquid is considered. The coupling equations
are summarised, accounting for the compressibility of the liquid and the Mindlin–Reissner plate theory. An
analytical solution is sought in the one-dimensional case, for a load that travels at a constant velocity,
subsonic with respect to the liquid sound velocity. The work completes results already obtained for the
supersonic case. The steady-state solution is theoretically established for a moving force and is explicit for
displacements, transverse deflexion and cross-sectional rotation, for flexural and shearing stresses in the
plate and for pressure and velocities in the liquid. All results are in a non-dimensional form and contain as
few parameters as possible. Graphs and curves are added which provide results for any aluminium or steel
plate coupled with water, whatever the subsonic velocity of loading.

A numerical part completes the study and reveals that, when a moving force travels across a large
coupled plate at a constant velocity, a part of the response evolves progressively towards the steady-state
response. Comparison shows that the transient numerical solution to a stationary loading converges to the
theoretical stationary response.
r 2005 Published by Elsevier Ltd.
1. Introduction

Fluid-structure coupling problems can take a variety of forms. The present one concerns the
response of a plate in contact with a liquid when a load moves on the plate. This problem itself
see front matter r 2005 Published by Elsevier Ltd.
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can be envisaged with a very large scope of hypotheses depending on the loading velocity range. If
the point of application of the load moves sufficiently fast, it is necessary to consider acoustic
wave propagation. A previous study [1], summarised the interest of the problem and studied the
response of such a system submitted to a high-velocity travelling loading, possibly of the same
order as the velocities of sound in the plate or in the liquid. The response was found and the
analysis revealed that the stationary response was of great interest. It was established that, for
constant loading velocity, greater than the velocity of sound of the liquid, the response contained
a stationary part which converged with a quasi steady-state response.
The previous work suggested that the same would be true for reduced load velocities, i.e. less

than the velocity of sound in the liquid. For such so-called subsonic velocities, the nature of the
governing equations changes and those describing the liquid become elliptic. The problem cannot
be solved in the same manner.
The purpose of this paper is to investigate stationary responses for coupled systems loaded by

subsonic travelling pressure fields.
The existence of a stationary response presupposes that the sizes of the system are large enough

to avoid waves reflected at the boundaries coming back to the neighbourhood of the observation
point. This is generally possible with a favourable compromise between the sizes of the system and
the time of observation.
Although several physical problems need such an analysis, the main purpose of this work is to

analyse the response of a plate in contact with a liquid under explosive loading.
The previous cited work established a validated numerical method able to predict the response

of a coupled plate for any dynamic loading, especially a detonation. A running detonation is able,
in some conditions, to produce a constant load profile, travelling at a constant velocity. This
special case reinforces the necessity of studying the possibility of a stationary response following
the loading. For real explosions, the conditions are not so simple that they could be summarised
by a one-dimensional analysis. Nevertheless, the study of real explosions expanding on plates has
shown that a cylindrical expansion gave rise to responses, and especially stresses, very close to
those observed in the one-dimensional expansion. So, the one-dimensional analysis seems a good
compromise to permit a theoretical solution.
This dynamic problem, takes account of acoustic waves in a compressible liquid. Moreover, the

shortness of wavelengths requires that Mindlin plate theory be considered (or, the one-
dimensional equivalent, the Timoshenko beam). These two hypotheses are essential and sufficient.
For this reason, works found in the literature about coupling are not really useful because most of
them concern either uncompressible liquid, either the classical flexion theory and often, both
together [2,3]. Moreover, some of them consider a finite constant depth of liquid, like the work of
Nugroho [4] who studied the behaviour of an ice sheet loaded by moving trucks or aeroplanes; all
these hypotheses do not lend themselves to finding high-frequency stationary responses.
The best analysis is that of the Timoshenko beam on an elastic foundation, a classical problem

revisited recently by Felszeghy [5] who summarises the essential elements of the results and which
underlines clearly that the classical flexion theory is not suitable.
The problem of a beam (or plate) coupled to a continuous medium is somewhat different from

that of a beam on an elastic foundation in the sense that the continuity of the medium ties the two
parts of the beam, ahead or rear of the force. In that case, the velocity of the loading must be
compared, not only with the characteristic bar (or plate) velocities, but also with the characteristic
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velocities of waves in the medium (Shear and Rayleigh waves). Dieterman and Metrikine have
contributed to many works in this field. The nearest of them concerns the steady-state
displacement of a beam on an elastic half-space due to a uniformly moving constant load [6].
The coupling to a compressible liquid, in the case of subsonic velocity of loading, reveals a new

difficulty. The solutions of the coupling equations are different from those previously
encountered. The present analytical resolution has used Fourier Sine and Cosine Transforms of
polynomial ratios.
2. Statement of problem

The problem is envisaged as being one-dimensional. All necessary details useful for the
statement of equations can be obtained in the previously cited work. In this context, only the
definition of functions, variables and parameters is recalled, as the correspondence between
dimensional and non-dimensional values (noted in capital letters).
Fig. 1 presents the geometry and coordinates of the plate–liquid coupled system.

2.1. Plate governing equations

The plate is assimilated to a strip of unit width. It has a mass density r, a thickness h, a Young’s
modulus E, a Poisson’s ratio n, a shear modulus G and a shear correction factor k.
The displacements necessary to describe the motion of the strip are: w(x, t), the flexural

displacement of the neutral axis, and Cðx; tÞ, the angular rotation of the cross-section.
The stresses induced by the bending are: s, the flexural stress on the external surface and t the

average shear stress in the cross-section. The general form of pressure loading is a function p(x, t).
The following non-dimensional variables are used where A represents the cross-sectional area

and I its moment of inertia:

r0 ¼

ffiffiffiffi
I

A

r
¼

hffiffiffiffiffi
12
p ; X ¼

x

r0
; W ¼

w

r0
. (1)
x

z→

→

v
f0

Liquid

Plate

Fig. 1. The coupled system and its loading.
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Using the velocity of longitudinal propagation in a plate

vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

rð1� u2Þ

s
, (2)

and the modified shear wave velocity

vs ¼

ffiffiffiffiffiffiffi
kG

r

s
with k ¼ 0:86 (3)

[7] one sets

y ¼
vs

vp

; T ¼ t
vp

r0
; P ¼

p

rv2p
ffiffiffiffiffi
12
p ; S ¼

s

rv2p
ffiffiffiffiffi
12
p . (4)

The non-dimensional equations of the movement are recalled from Eq. [8]

q2W

qT2
¼ y2

q2W

qX 2
�

qC
qX

� �
þ P X ;Tð Þ, (5)

q2C
qT2
¼

q2C
qX 2
þ y2

qW

qX
�C

� �
. (6)

The non-dimensional forms S and G correspond to the dimensional forms s and t.

S ¼ �
1

2

qC
qX

; G ¼
y2ffiffiffiffiffi
12
p

qW

qX
�C

� �
. (7)

2.2. Liquid governing equations

The velocity of acoustic waves in the liquid is noted vl; its mass density is rl.
Using the potential function j, one obtains

q2j
qt2
¼ v2lr

2j. (8)

The pressure and speeds are deduced by

p ¼ rl

qj
qt
;

qu

qt
¼ �

qj
qx
;

qw

qt
¼ �

qj
qz

, (9)

u and w are the displacements in the liquid according, respectively, to the x and z coordinates.
The new non-dimensional variables are introduced

F ¼ j=vpr0; Z ¼ z=r0; d ¼ vl=vp; m ¼ rl=r
p
12. (10)

And the new non-dimensional equations are deduced

q2F
qT2
¼ d2

q2F
qX 2
þ

q2F
qZ2

� �
, (11)
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qU

qT
¼ �

qF
qX

;
qW

qT
¼ �

qF
qZ

; P ¼ m
qF
qT

. (12)

2.3. Coupling equations

Introducing the continuity of stresses and normal displacement at the interface, the following
two equations take place:

Pint ¼ m
qF
qT

� �
ðZ¼0Þ

and
qW

qT

� �
ðPlateÞ

¼ �
qF
qZ

� �
ðZ¼0Þ

. (13)

Pint is the internal pressure, under the plate, and Pext the external loading, on the plate.

2.4. Final equation system

According to the previous conditions, the coupled equations take the form

q2W

qT2
¼ y2

q2W

qX 2
�

qC
qX

� �
þ m

qF
qT

� �
ðZ¼0Þ

þ Pext X ;Tð Þ, (14)

q2C
qT2
¼

q2C
qX 2
þ y2

qW

qX
�C

� �
, (15)

qW

qT

� �
¼ �

qF
qZ

� �
ðZ¼0Þ

, (16)

q2F
qT2
¼ d2

q2F
qX 2
þ

q2F
qZ2

� �
. (17)

The first three equations are valid for the plate and on the boundary of the liquid while the fourth
one is valid in the fluid domain and on its boundary.
3. The steady-state case

3.1. Equation formulation

Let now the loading of the system be the dimensional force f0 travelling at constant velocity v on
an infinitely long strip, from left to right. The force starts from x ¼ �1 and goes towards
x ¼ þ1. If, for an observer who moves with the load, the motion of the coupled system appears
frozen, a steady-state solution exists.
The formulation of a steady-state solution needs some abstract analysis. While no boundary

conditions are introduced, the system is free. The gravity forces are also omitted. The movement
of the system is assumed to have existed for a very long time. In these conditions, the values of
diverse functions can be infinite at the ends of the plate. Furthermore, a steady-state movement of
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the system, loaded by a vertical force, can verify that it has been uniformly falling for a very long
time. Under this assumption, a non determined very large constant is added to the vertical
displacement.
Let V and F0 be the non-dimensional form of the loading velocity (V ¼ v/vp) and of the moving

force.
For an observer moving with the load, only one variable Y is useful to describe the motion

of the system. This relative variable Y is related to the absolute variable X by: Y ¼ X�V.T,
then

W ðX ;TÞ ¼ Ŵ ðY Þ; CðX ;TÞ ¼ ĈðY Þ; FðX ;Z;TÞ ¼ F̂ðY ;ZÞ

with

PðX ;TÞ ¼ P̂ðY Þ ¼ F0 � dðY Þ

Replacing partial derivatives by ordinary derivatives, q=qX ¼ d=dY ; q=qT ¼ �V ðd=dY Þ,
and omitting the sign ^ on the functions, the system of coupled equations becomes

V2 d
2W

dY 2
¼ y2

d2W

dY 2
�

dC
dY

� �
� mV

qF
qY

� �
ðZ¼0Þ

þ F0d Yð Þ, (18)

V2 d
2C

dY 2
¼

d2C
dY 2
þ y2

dW

dY
�C

� �
, (19)

V
dW

dY
¼

qF
qZ

� �
ðZ¼0Þ

, (20)

V2 q
2F

qY 2
¼ d2

q2F
qY 2
þ

q2F
qZ2

� �
. (21)

3.2. Solution procedure

Eqs. (18)–(21) form a linear system. Its solution can be searched as the sum of a solution of the
forced equations and of a solution of the homogeneous associated equations.

The last equation of the system is transformed by setting O2 ¼ d2 � V2
� �

=d2 (22)

in: O2 q
2F

qY 2
þ

q2F
qZ2
¼ 0. (23)

The hypothesis Vod confirms that Eq. (23) is a Laplace equation. That is the very difference with
the supersonic case. Nevertheless, the analysis remains highly applicable for a range of very high
load velocities, since the velocity of acoustic waves in water is about 1500m/s.
Eq. (23) is valid in the half-plane Zp0. Its solution in the whole half-plane can be found by

knowing only F(Y, 0), the value of F on the boundary Z ¼ 0, as recalled by Haberman [9] in its
consideration about infinite-domain problems.
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Using the Fourier transform with the following definition:

Fðx;ZÞ ¼
1

2p

Z þ1
�1

FðY ;ZÞeixY dY , (24)

FðY ;ZÞ ¼
Z þ1
�1

Fðx;ZÞe�ixY dx (25)

and transforming Eq. (23), one obtains

q2F
qZ2
� x2O2F ¼ 0, (26)

which has for general solution

Fðx;ZÞ ¼ aðxÞexOZ þ bðxÞe�xOZ. (27)

Z being non-positive, the solution Fðx;ZÞ must be interpreted as

Fðx;ZÞ ¼
aðxÞexOZ for xX0;

bðxÞe�xOZ for xo0:

����� (28)

To sum up

Fðx;ZÞ ¼ CðxÞejxjOZ. (29)

This general solution is used to solve Eqs. (18), (19) by the way of Fourier transform.

�x2V2W ¼ y2 �x2W þ ixc
� �

� mV �ixð ÞFZ¼0 þ
F0

2p
, (30)

�x2V2c ¼ �x2cþ y2 �ixW � c
� �

(31)

with FZ¼0 ¼ Fðx; 0Þ ¼ CðxÞ. (32)

The condition of coupling, Eq. (20) gives

qF
qZ

� �
Z¼0

¼ �ixVW . (33)

Using Eq. (29)

qF
qZ

� �
Z¼0

¼ O xj jC xð Þ (34)

and after comparison

C xð Þ ¼ �i sgn xð Þ
V

O
W . (35)

Reintroducing this value of CðxÞ, system (30), (31) becomes

W x2 y2 � V2
� �

� xj j
mV2

O

� �
� ixy2
	 


c ¼
F0

2p
, (36)
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W �ixy2
	 


þ �y2 þ x2 V2 � 1
� �	 


c ¼ 0. (37)

To solve the system, the determinant is necessary and resembles the following polynomial:

P xð Þ ¼ x x3 y2 � V2
� �

V2 � 1
� �

þ xy2V2 � sgn xð Þm
V2

O
x2 V2 � 1
� �

� y2
� �� �

, (38)

where it is convenient to distinguish
P+(x) corresponding to xX0, from P_(x) corresponding to xo0.
Thus, it is possible to obtain the original functions

W Yð Þ ¼

Z þ1
�1

W xð Þe�ixY dx ¼
F0

2p

Z þ1
�1

x2 V2 � 1
� �

� y2

P xð Þ
e�ixY dx, (39)

C Yð Þ ¼

Z þ1
�1

C xð Þe�ixY dx ¼
F0

2p

Z þ1
�1

iy2x
P xð Þ

e�ixY dx, (40)

F Y ; 0ð Þ ¼

Z þ1
�1

F x; 0ð Þe�ixY dx ¼
F0

2p

Z þ1
�1

V

O
�i sgn xð Þ x2 1� V2

� �
� y2

� �
P xð Þ

e�ixY dx. (41)

For example, developing C

CðY Þ ¼
F0

2p

Z 0

�1

iy2x
P�ðxÞ

e�ixY dxþ
F0

2p

Z 1
0

iy2x
Pþ xð Þ

e�ixY dx, (42)

CðY Þ ¼
F0

p

Z 1
0

y2x
PþðxÞ

sinðxY Þdx, (43)

where Z 1
0

y2x
Pþ xð Þ

sin xYð Þdx

represents the inverse Fourier Sine Transform of y2x=Pþ xð Þ:
In a similar way, the other original functions are found, which use Fourier Sine and Cosine

transform [10].

W Yð Þ ¼
F0

p

Z 1
0

x2 V2 � 1
� �

� y2

Pþ xð Þ
cos xYð Þdx, (44)

F Y ; 0ð Þ ¼
F0

p

Z 1
0

V

O
y2 � x2 V2 � 1

� �
Pþ xð Þ

sin xYð Þdx. (45)

And the most useful derivatives to obtain stresses, according to Eq. (7), and pressure, according to
Eq. (12)

dW

dY
Yð Þ �C Yð Þ ¼

F0

p

Z 1
0

�x3 V2 � 1
� �
Pþ xð Þ

sin xYð Þdx, (46)
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dC
dY

Yð Þ ¼
F0

p

Z 1
0

x2y2

Pþ xð Þ
cos xYð Þdx, (47)

dFz¼0

dY

� �
Yð Þ ¼

F0

p
V

O

Z 1
0

x y2 � x2 V2 � 1
� �� �

Pþ xð Þ
cos xYð Þdx, (48)

P+(x) can be written

Pþ xð Þ ¼ y2 � V2
� �

V2 � 1
� �

xQ xð Þ (49)

with

Q xð Þ ¼ x� að Þ
2
þ b2

� �
x� gð Þ case ðaÞ or

Q xð Þ ¼ x� a1ð Þ x� a2ð Þ x� gð Þ case ðbÞ: ð50Þ

The study of the roots of Q(x) for any value of V, 0oVoy, confirms the following properties:
ao0; b40; g40 or a1o0; a2o0; g40. For an aluminium plate coupled with water, the conditions
of case (a) are always verified. For high values of m, the two cases can occur if the velocity of
loading is taken on a large interval; which is the case for steel plates.
Case (b) is much less difficult to study than (a). The further developments will correspond to

choice (a) so that the conclusion would be generalised to any case.
The research of inverse transforms requires a long and delicate development which is detailed in

appendix.
This work defines a series of coefficients and primary integrals which allow all of the

fundamental functions of the response to be constructed, which finally take the form

W ðY Þ ¼
F0

p
gC2

y2 � V2

�
Igc Yð Þ � I1abc Yð Þ þ C6I0abc Yð Þ
	 


�
y2

g y2 � V2
� �

V2 � 1
� � �C1I0c Yð Þ þ C2Igc Yð Þ

	

þ C1C2C3I1abc Yð Þ þ C1C2C4I0abc Yð Þ

�

, ð51Þ

C Yð Þ ¼
F0

p
y2

y2 � V2
� �

V2 � 1
� �C2 Igs Yð Þ � I1abs Yð Þ þ C5I0abs Yð Þ

	 

, (52)

FðY ; 0Þ ¼
F0

p
V

O
y2

g y2 � V2
� �

V2 � 1
� �

(

�C1I0s Yð Þ þ C2Igs Yð Þ þ C1C2C3I1abs Yð Þ þ C1C2C4I0abs Yð Þ
	 

�

gC2

y2 � V2
� � I gs Yð Þ � I1abs Yð Þ þ C6I0abc Yð Þ

	 
)
. ð53Þ
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The useful functions, dW/dY�C and dC/dY, allow the stresses in the plate to be obtained, and
dF Y ;0ð Þ


dY allow the pressure immediately under the plate to be determined. It can be deduced,

either directly or from the derivatives of W, C and F. The derivatives of primary integrals are
contained in the appendix.
Observing the whole results in detail, it is verified that the continuity of the functions W,C,f

and dC/dY can be extended in Y ¼ 0, which is physically realistic.
On the contrary, dW/dY is not continuous in Y ¼ 0, like the shear force. The derivative

dFðz¼0Þ=dY is not finite in Y ¼ 0, due to the fact that the slope of W(Y) is not continuous in
Y ¼ 0. In fact, it takes the form of a very narrow sharp peak much less wide than the plate
thickness. This is mathematically correct, but physically unacceptable. The discrepancy comes
from the fact that a three-dimensional theory would be indispensable to describe the flexing of a
beam in the immediate neighbourhood of the point of application of the force.
For large values of Y, ðY ¼ �1Þ, all the functions have a zero average value, except F(Y,0). In

fact, any constant value can be added to F without consequences, as can be seen in the initial
system, Eqs. (18)–(21).
If it is chosen that the average value of F(+N,0) is zero, then the average value of F(�N,0)

will be F0/mV. This value verified by the calculated function could be deduced directly from Eq.
(18) of the initial system after integration between Y ¼ �N and +N.
All the functions calculated up to now form a particular solution to the forced system, Eqs.

(18)–(21). It is clear that any solution which would satisfy the homogenous associated system
could be added.
Since no singularities exist in the absence of loading, a solution of homogeneous equations must

be valid over the interval [�N,+N] and must present a single definition on this whole domain.
Among all the mathematical possibilities, those of type A cos((a+ib)Y) are not convenient
because they are not finite, either for Y ¼+N or for Y ¼ �N. Only one remains acceptable, of
type A cos(gY). Such a solution is generally called ‘‘free wave’’.
A so called free wave is theoretically acceptable. Furthermore, the forced solution presented

above is obviously incomplete because it appears exactly symmetrical with respect to negative or
positive Y, without depending on the direction of the moving of the load, which is not physically
realistic.
A previous work [8], which is similar in some aspects, but which studies plates alone, without

coupled liquid, established that, in this range of velocity of loading, vibrations took place only
ahead of the load front.
The research of free waves is based on the characteristic equation of the associated

homogeneous system and on the compatibility of functions W,C and F between each other.
This analysis has been achieved; its development is quite long but leads without ambiguity to an
acceptable simple form of free waves.
The free waves obtained are given below, and verify exactly the homogeneous system. Their

amplitudes have been adjusted to cancel any harmonic vibrations behind the position of the
loading force.

W free ¼ �F0
C2

g
y2 þ 1� V2

� �
g2

y2 � V2
� �

1� V2
� � sin gYð Þ, (54)
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Cfree ¼ �F0C2
y2

y2 � V2
� �

1� V2
� � cos gYð Þ, (55)

FfreeðZ¼0Þ ¼ �F0
V

O
C2

g
y2 þ 1� V2

� �
g2

y2 � V2
� �

1� V2
� � cos gYð Þ. (56)

The addition of these free waves to the forced solution completes the response of the system.
The knowledge of F(Y, 0) makes it possible to obtain F(Y,Z) for any negative value of Z.
The method using a Green function is recalled in [9].
It has been established by Eq. (29) that

F x;Zð Þ ¼ F x; 0ð Þe xj jOZ. (57)

The function e xj jOZ can be considered as the Fourier transform of a Green function g(Y,Z), so
that

g Y ;Zð Þ ¼

Z þ1
�1

ejxjOZe�ixY dx ¼
Z 0

�1

e�x OZþiYð Þ dxþ
Z 0

�1

ex OZ�iYð Þ dx; Zo0ð Þ

¼ �
e�x OZþiYð Þ

OZ þ iY

����
0

�1

þ
ex OZ�iYð Þ

OZ � iY

����
1

0

, ð58Þ

finally,

g Y ;Zð Þ ¼ �
2OZ

Y 2 þ O2Z2
, (59)

F x; 0ð Þ being the Fourier transform of F(Y, 0), the convolution of functions gives the value of F
in the whole half space Zo0.

F Y ;Zð Þ ¼
1

2p

Z þ1
�1

F ~Y ; 0
� � �2OZ

Y � ~Y
� �2

þ O2Z2
d ~Y . (60)

The same method can be followed to obtain qF=qY Y ;Zð Þ from qF=qY Y ; 0ð Þ:
Nevertheless, another choice avoids the calculation of any new integral, using the same form of

development as the one presented above. The demonstration will be presented on the useful
function qF=qY only. By derivation of Eq. (57), one obtains

qF
qY

x;Zð Þ ¼ �ixF x; 0ð ÞejxjOZ, (61)

which gives by inverse transform

qF
qY

Y ;Zð Þ ¼

Z 1
�1

�ixF x; 0ð ÞejxjOZe�ixY dx. (62)

Using previous developments

qF
qY

Y ;Zð Þ ¼
F0

2p

Z þ1
�1

V

O
ix �i sgn xð Þð Þ x2 V2 � 1

� �
� y2

� �
P xð Þ

ejxjOZe�ixY dx (63)
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¼
F0

2p
V

O

Z 0

�1

�x x2 V2 � 1
� �

� y2
� �

P� xð Þ
e�xOZe�ixY dx

þ
F0

2p
V

O

Z 1
0

x x2 V2 � 1
� �

� y2
� �

Pþ xð Þ
exOZe�ixY dx, ð64Þ

finally

qF
qY

Y ;Zð Þ ¼
F0

p
V

O

Z 1
0

x x2 V2 � 1
� �

� y2
� �

Pþ xð Þ
exOZ cos xYð Þdx. (65)

Using the transformation of exOZ in complex expression, one obtains

exOZ cos xYð Þ ¼ �
i

2
sin Y þ iOZð Þxð Þ � sin Y � iOZð Þxð Þ½ �

þ
1

2
cos Y þ iOZð Þxð Þ þ cos Y � iOZð Þxð Þ½ �. ð66Þ

Reintroducing this value in Eq. (65), qF=qY Y ;Zð Þ can be obtained by the way of Fourier Sine
and Cosine transform, as previously. All the necessary integrals have been already presented
explicitly; they must be rearranged only for the use of complex variables.
Finally, the entire theoretical results can be summarised, including the free wave in every

function.
The results are valid for any Y, Y 2 �1;þ1½ �

W Yð Þ ¼
F0

p
gC2

y2 � V2
I gc Yj jð Þ � I1abc Yj jð Þ þ C6I0abc Yj jð Þ
	 


þ
F0

p
y2

g y2 � V2
� �

1� V2
� � �C1½ I0c Yj jð Þ þ C2Igc Yj jð Þ þ C1C2C3I1abc Yj jð Þ

þ C1C2C4I0abc Yj jð Þ � F0

y2 þ 1� V2
� �

g2

g y2 � V2
� �

1� V2
� �C2 sinðgY Þ, ð67Þ

C Yð Þ ¼ �
F0

p
y2 sgn Yð Þ

y2 � V2
� �

1� V2
� �C2 I gs Yj jð Þ � I1abs Yj jð Þ þ C5I0abs Yj jð Þ

	 


� F0
y2

y2 � V2
� �

1� V2
� �C2 cos gYð Þ, ð68Þ

F Y ; 0ð Þ ¼ �
F0

p
V

O
y2 sgn Yð Þ

g y2 � V2
� �

1� V2
� � �C1I0s Yj jð Þ þ C2Igs Yj jð Þ þ C1C2C3I1abs Yj jð Þ

	
þ C1C2C4I0abs Yj jð Þ �

F0

p
V

O
g sgn Yð Þ

y2 � V2
� �C2 I gs Yj jð Þ � I1abs Yj jð Þ þ C6I0abs Yj jð Þ

	 


� F0
V

O
y2 þ 1� V2

� �
g2

g y2 � V2
� �

1� V2
� �C2 cos gYð Þ �

F0

2

V

O
y2

g y2 � V2
� �

1� V2
� �C1. ð69Þ

The last constant value added is adjusted to make the average value of F(+N, 0) equate to zero.
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All these functions are displayed below, Fig. 2. All the graphs are drawn with the following
choice of parameters :
d ¼ 0:28; y ¼ 0:55; m ¼ 0:1; this first set of parameters corresponds to any aluminium plate

coupled with water.
V ¼ 0.25; this choice corresponds to a load velocity of approximately 1360m/s as a dimensional

value (for an aluminium plate).
F0 ¼ �1; this choice corresponds to an external unit non-dimensional force pushing the plate

against the liquid.
Which results in the following:
a ¼ �0.167458466453; b ¼ 0.139521933258; g ¼ 0.39274361103; O ¼ 0.450340007604.
Using relationships between the coefficients and roots of polynomials, some simplification can

take place and some remarkable values can be highlighted.
Particular values of the functions in some points are noted.

C 0ð Þ ¼
F0y

2

y2 � V2
� �

V2 � 1
� �C2, (70)

F 0; 0ð Þ ¼ �F0
V

O
2 y2 þ 1� V2

� �
g2

� �
C2 þ y2C1

2g y2 � V2
� �

1� V2
� � , (71)
W= 100

Y= -100

Y= -100

Y= -100 Y= -100

Y=   0

10

10

50

50

Y= 100

Y= 100

(a)

(b)

(c)

Fig. 2. Theoretical stationary response of the coupled system: (a) transverse displacement W(Y), (b) cross-section

angular rotation C(Y) and (c) pressure potential F(Y,0) at the interface.
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F �1;Zð Þ ¼ �
F0

gV
. (72)

The necessary functions to deduce stresses and pressure take the form

dW

dY
�C ¼ �

F0

p
g2 sgn Yð Þ

y2 � V2
C2 I gs Yj jð Þ þ C7I1abs Yj jð Þ þ C8I0abs Yj jð Þ
	 


� F0
g2

y2 � V2
C2 cos gYð Þ, ð73Þ

dC
dY
¼ �

F0

p
y2g

y2 � V2
� �

1� V2
� �C2 I gc Yj jð Þ � I1abc Yj jð Þ þ C6I0abc Yj jð Þ

	 


þ F0
y2g

y2 � V2
� �

1� V2
� �C2 sin gYð Þ, ð74Þ

qF
qY

� �
z¼0

¼ �
F0

p
V

O
y2

y2 � V2
� �

1� V2
� �C2 I gc Yj jð Þ � I1abc Yj jð Þ þ C5I0abc Yj jð Þ

	 


�
F0

p
V

O
g2

y2 � V2
� �C2 Igc Yj jð Þ þ C7I1abc Yj jð Þ þ C8I0abc Yj jð Þ

	 


þ F0
V

O
y2 þ 1� V2

� �
g2

y2 � V2
� �

1� V2
� �C2 sin gYð Þ ð75Þ

with the particular values

dW

dY
�C

� �
0�

¼ �
F0

2 y2 � V2
� � 2g2C2 � 1

� �
, (76)

dW

dY
�C

� �
0þ

¼ �
�F0

2 y2 � V2
� � 2g2C2 þ 1

� �
, (77)

which gives the discontinuity �F0=ðy
2
� V2Þ in Y ¼ 0

dC
dY

� �
0

¼ �
F0

p
y2gC2

y2 � V2
� �

1� V2
� � ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
g

� C6 arctan
b
a

0
@

1
A. (78)

Eqs. (73), (74) and (7) enable stresses to be obtained. They are displayed in Fig. 3.
The pressure in the liquid is deduced from ðqF=qY Þz¼0: It is displayed in Fig. 4.
Harmonic parts of the responses are of interest because their amplitudes are significant with

regard to the whole response, especially so for stresses and pressure.

W� ¼ �F0

y2 þ 1� V2
� �

g2

g y2 � V2
� �

1� V2
� � 2C2 sin gYð Þ ¼ �F0AW sin gYð Þ, (79)
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C� ¼ �F0
y2

y2 � V2
� �

1� V2
� � 2C2 cos gYð Þ ¼ �F0AC cos gYð Þ, (80)

F� ¼ �F0
V

O
y2 þ 1� V2

� �
g2

g y2 � V2
� �

1� V2
� � 2C2 cos gYð Þ ¼ �F0AF cos gYð Þ, (81)

G� ¼ y2ffiffiffiffi
12
p

� � dW

dY
�C

� �
�

¼ �F0
y2ffiffiffiffi
12
p

� � g2

y2 � V2
2C2 cos gYð Þ

¼ � F0AG cos gYð Þ, ð82Þ
Y=-100 Y=100

Y=100Y=-100

2

-2

0.5

-0.5

(a)

(b)

Fig. 3. Theoretical stationary stresses in the plate. (a) flexural stress SðY Þ on the upper face and (b) average shear

stress GðY Þ.

Y=-100 Y=-100
Z= 0

Z=-5

Z=-10

Z=-15

Z=-20

Z=-25

P= 0.125

Y= 0

Fig. 4. Pressure in the liquid and its attenuation with depth.
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S� ¼ � 1
2

dC
dY

� �
�

¼ �F0
1

2

gy2

y2 � V2
� �

1� V2
� � 2C2 sin gYð Þ

¼ � F0AS sin gYð Þ, ð83Þ

P� ¼ � mV
qF
qY

� �
�

Y ;Zð Þ ¼ �F0m
V2

O
y2 þ 1� V2

� �
g2

y2 � V2
� �

1� V2
� � 2C2 sin gYð ÞegOZ

¼ � F0AP sin gYð ÞegOZ. ð84Þ

All these harmonic functions are characterised by their amplification factors. They all depend on g
and C2. The latter, according to Eqs. (A.6) and (49), (50) can be expressed in an alternative form

C2 ¼ y2 � V2
� �

V2 � 1
� �

=P0þ gð Þ, (85)

which uses root g only and which is convenient also in case (b) of Eq. (50).
The last function, Eq. (84) gives the oscillation of pressure and also characterises the

attenuation of the pressure with the depth.
The whole of the previous analysis corresponds to a unit force, but any constant profile of

loading can be taken into account by convolution. The particular case of a constant pressure step
is among the simplest, and the corresponding response is exactly the integral of that of a Dirac
loading used to represent a single force. In that case, it is particularly easy to obtain the new
harmonic parts by integration and to deduce the new amplification factors.
In conclusion to this theoretical analysis, useful curves are presented, which permit the

responses of a whole series of plates coupled with liquid to be obtained, for any subsonic loading
velocity.
Only three non-dimensional parameters accounting for the mechanical properties of the plate

and of the liquid are useful: y, d and m. From these, the roots a, b and g of the characteristic
polynomial are deduced and presented Fig 5. They enable the frequency and attenuation of the
responses to be found.
The response always contains a harmonic vibration which is present ahead of the force. Its

amplitude is characterised by amplification factors. Fig. 6 gives amplification factors of
displacement and rotation while Fig. 7 gives those of stresses and pressure.
4. Comparison of stationary and transient responses

The previously cited study [1] established that, in the supersonic range, i.e. for any loading
velocity greater than the velocity of acoustic waves in the liquid, the solution in the
neighbourhood of the moving front converged to the stationary solution. The comparison was
achieved using the theoretical solution for the stationary analysis and the result of a
computational method for the transient case.
The same numerical method has been used to calculate the response of a coupled system in the

subsonic range. The method uses an explicit scheme of integration in time associated with a finite
difference method. It has already been used and improved for shell, plate and beam theories [12]
and revealed itself to be very efficient, precise and fast for application to moderately thick
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Fig. 5. Evolution of the principal parameters with the load velocity: (a) convenient for aluminium–water coupling and

(b) convenient for steel–water coupling.
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structures. It is appropriate to find high frequencies, possibly in the range 104, 105 s�1, as
confirmed by experiments.
If a theoretical stationary response can be set for an infinite domain, a numerical solution

generally needs a finite domain of calculation, which requires boundary conditions. For this
purpose, the plate–liquid domain has been chosen to be very large (600 long, 300 deep). A unit
force has been supposed, travelling from left to right at a constant velocity (V ¼ 0.25). The
response has been observed when the force has reached the centre of the plate. At this moment, it
has been possible to separate the part of the response depending on the boundary conditions from
another part which follows the loading and remains unchanged during translation. Thus, the
numerical solution applied over a large domain is able to contain the stationary response to a
moving load.
To compare the two stationary solutions, the theoretical curves have been superimposed on the

calculated values, in a neighbourhood of force, ranging from Y ¼ �100 to +100. On the left of
this domain, the calculated response contains the effect of boundaries; on the right of the domain,
it reveals the progressive construction of the stationary response. Fig. 8 presents the superposition
of theoretical and computed curves for the principal functions, W, C, FZ¼0. The proximity of the
transient and stationary responses is evident. ForC and F, the superposition of curves takes place
very quickly. For W, the effect of boundary conditions in the transient response delays the
coincidence. Nevertheless, for longer travel times, W itself becomes closer and closer to the
stationary solution.
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The comparison has also been observed on stresses in the plate. The Fig. 9 presents
the proximity of curves obtained for S (flexural stress on the upper face of the plate) and G.
(average shear stress). The superposition of the curves is almost perfect, down to the smallest
detail.
For displacements W and C, the stationary values can be insignificant with respect to values

attained in the transient part of the response. On the contrary, for stresses, the values obtained in
the stationary responses can be very significant with respect to those reached in the transient part.
This result highlights the importance of the stationary solution.
The pressure in the liquid, resulting directly from FZ¼0, is also the same, in the neighbourhood

of the force, for the calculated or theoretical solutions.
5. Conclusion

The purpose of this work was to research the analytical response of a plate coupled with a
liquid, for loading travelling at high and constant velocity, but ranging in the subsonic case. It
completes the study in the more simple supersonic case, already obtained. The analytical solution
is presented for a unit force but the case of any constant profile of loading can be deduced by
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convolution. The analysis of the problem was carried out with non-dimensional functions, so that
a minimum number of parameters was necessary. The comparison with the transient solution
obtained computationally, for the same load case, shows that the transient response converges
towards the stationary response in the vicinity of the load. The two responses quickly become
closer and closer on an interval which grows around the position of the load as the latter travels
along the plate.
The stresses in the plate and the pressure in the liquid are described very precisely by the

stationary theory. Only their harmonic parts are significant and they only occur ahead of the load.
For this reason, the theoretical analytical response gives a good estimation of the stresses in the
plate, even in real cases of transient loading.
The study of the case of subsonic loading reveals that the pressure vanishes with the depth. This

is a significant difference with respect to the supersonic case because the perturbation of pressure
in the liquid is localised in the neighbourhood of the plate.
To end with a practical aspect, the paper includes the presentation of the variation of useful

parameters and factors with the velocity of loading, which makes it possible to deduce the
frequency and amplitude of harmonic waves present in coupled systems. The results are directly
applicable to any aluminium or steel plate, whatever their thickness, for subsonic loading velocity
(dimensional velocity lower than 1500m/s).
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Appendix

To achieve the inverse transforms, the previous polynomial ratios resulting from Eq. (50) have
to be converted into partial-fraction expansion

1

x x� gð Þ x� að Þ
2
þ b2

� � ¼ 1

g
�

C1

x
þ

C2

x� g
þ C1C2C3

x� g

x� að Þ
2
þ b2
þ C1C2C4

b

x� að Þ
2
þ b2

� �
,

(A.1)

1

x� gð Þ x� að Þ
2
þ b2

� � ¼ C2
1

x� g
�

x� a

x� að Þ
2
þ b2
þ C5

b

x� að Þ
2
þ b2

� �
, (A.2)

x

x� gð Þ x� að Þ
2
þ b2

� � ¼ C2g
1

x� g
�

x� a

x� að Þ
2
þ b2
þ C6

b

x� að Þ
2
þ b2

� �
, (A.3)

x2

x� gð Þ x� að Þ
2
þ b2

� � ¼ C2g2
1

x� g
þ C7

x� a

x� að Þ
2
þ b2
þ C8

b

x� að Þ
2
þ b2

� �
(A.4)

with the Ci coefficients

C1 ¼
1

a2 þ b2
; C2 ¼

1

g� að Þ
2
þ b2

; C3 ¼ g g� 2að Þ

C4 ¼
g
b

a2 � b2 � ag
� �

; C5 ¼
a� g
b

; C6 ¼
a2 þ b2 � ga

bg
,

C7 ¼
a2 þ b2 � 2ag

g2
; C8 ¼

g b2 � a2
� �

þ a a2 þ b2
� �

g2b
. (A.5)2(A.12)

Thus, seeking inverse transforms defined by Eqs (44)–(48) involves 8 integrals only

I0c Yð Þ ¼

Z 1
o

cos xYð Þ

x
dx, (A.13)

I0s Yð Þ ¼

Z 1
o

sin xYð Þ

x
dx, (A.14)

Igc Yð Þ ¼

Z 1
o

cos xYð Þ

x� g
dx; gX0, (A.15)

Igs Yð Þ ¼

Z 1
o

sin xYð Þ

x� g
dx, (A.16)

I0abc Yð Þ ¼

Z 1
0

b cos xYð Þ

ðx� aÞ2 þ b2
dx; ao0; b40, (A.17)
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I0abs Yð Þ ¼

Z 1
o

b sin xYð Þ

x� að Þ
2
þ b2

dx, (A.18)

I1abc Yð Þ ¼

Z 1
0

x� að Þcos xYð Þ

x� að Þ
2
þ b2

dx, (A.19)

I1abs Yð Þ ¼

Z 1
0

x� að Þ sin xYð Þ

x� að Þ
2
þ b2

dx. (A.20)

These integrals could be named, in this context, primary functions. They are calculated for
Y40 only. The parity consideration enables the values of functions to be extended to negative Y.
The values in Y ¼ 0 are not always defined. The load itself is also singular in Y ¼ 0.
The expression of previous integrals requires using secondary functions named Sine Integral

and Cosine Integral, usually found according to the form:

Si rð Þ ¼

Z r

0

sin t

t
dt; Ci rð Þ ¼ GE þ ln rð Þ þ

Z r

0

cos t� 1

t
dt, (A.21,A.22)

where r can be complex and where GE is the Euler Constant (GE ¼ 0:5772156649).
Precision about Sine and Cosine Integrals could be found in Ref. [11].
The following expressions are finally deduced (for Y40):

I0s Yð Þ ¼
p
2
, (A.23)

Igc Yð Þ ¼ �sinðgY ÞSi gYð Þ � cos gYð ÞCi gYð Þ �
p
2
sin gYð Þ, (A.24)

I gs Yð Þ ¼ cosðgY ÞSi gYð Þ � sin gYð ÞCi gYð Þ þ
p
2
cos gYð Þ, (A.25)

I0abc Yð Þ ¼ i
p
4

sin aþ ibð ÞYð Þ � sin a� ibð ÞYð Þð Þ

þ
i

2
Ci �a� ibð ÞYð Þcos aþ ibð ÞYð Þ � Si �a� ibð ÞYð Þsin aþ ibð ÞYð Þ½ �

þ
i

2
Si �a� ibð ÞYð Þsin a� ibð ÞYð Þ � Ci �aþ ibð ÞYð Þcos a� ibð ÞYð Þ½ �, ðA:26Þ

I0abs Yð Þ ¼ �
ip
4

cos aþ ibð ÞYð Þ � cos a� ibð ÞYð Þ½ �

þ
i

2
Si �a� ibð ÞYð Þcos aþ ibð ÞYð Þ � Si �a� ibð ÞYð Þcos a� ibð ÞYð Þ½ �

þ
i

2
Ci �a� ibð ÞYð Þsin aþ ibð ÞYð Þ � Ci �aþ ibð ÞYð Þsin a� ibð ÞYð Þ½ �, ðA:27Þ
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I1abc Yð Þ ¼ �
p
4
sin aþ ibð ÞYð Þ þ sin a� ibð ÞYð Þ½ �

þ
1

2
Si �a� ibð ÞYð Þsin aþ ibð ÞYð Þ þ Si �aþ ibð ÞYð Þsin a� ibð ÞYð Þ½ �

�
1

2
Ci �a� ibð ÞYð Þcos aþ ibð ÞYð Þ þ Ci �aþ ibð ÞYð Þcos a� ibð ÞYð Þ½ �, ðA:28Þ

I1abs Yð Þ ¼
p
4
cos aþ ibð ÞYð Þ þ cos a� ibð ÞYð Þ½ �

�
1

2
Si �a� ibð ÞYð Þcos aþ ibð ÞYð Þ þ Si �aþ ibð ÞYð Þcos a� ibð ÞYð Þ½ �

�
1

2
Ci �a� ibð ÞYð Þsin aþ ibð ÞYð Þ þ Ci �aþ ibð ÞYð Þsin a� ibð ÞYð Þ½ �. ðA:29Þ

Accounting for the properties of Ci(x) and Si(x)

Ci xð Þ�GE þ ln xð Þ for x�0; lim
x!þ1

Ci xð Þ ¼ 0, (A.30, A.31)

Si 0ð Þ ¼ 0; lim
x!þ1

Si xð Þ ¼
p
2
. (A.32, A.33)

One deduces

lim
Y!0

I0s Yð Þ ¼
p
2
; lim

Y!þ1
I0s Yð Þ ¼

p
2
, (A.34, A.35)

lim
Y!0

Igs Yð Þ ¼
p
2
; I gs Yð Þ�p cos gYð Þ for Y !þ1, (A.36, A.37)

Igc Yð Þ� � GE � ln gð Þ � ln Yð Þ for Y�0, (A.38)

Igc Yð Þ� � p sin gYð Þ for Y !þ1, (A.39)

lim
Y!0

I0abc Yð Þ ¼ �arctan
b
a
; lim

Y!þ1
I0abc Yð Þ ¼ 0, (A.40, A.41)

lim
Y!0

I0abs Yð Þ ¼ 0; lim
Y!þ1

I0abs Yð Þ ¼ 0, (A.42, A.43)

I1abc Yð Þ� � GE �
1

2
ln a2 þ b2
� �

� ln Yð Þ for Y�0; lim
Y!þ1

I1abc Yð Þ ¼ 0, (A.44, A.45)

lim
Y!0

I1abs Yð Þ ¼
p
2
; lim

y!þ1
I1abs Yð Þ ¼ 0. (A46, A47)
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Useful relations between the functions and their derivatives:

I 00s ¼ 0; I 00c ¼ �
1
Y
;

I 0gs ¼ gIgc; I 0gc ¼ �gI gs �
1
Y
;

I 01abs ¼ aI1abc � bI0abc; I 01abc ¼ �aI1abs þ bI0abs �
1
Y
;

I 00abs ¼ bI1abc þ aI0abc; I 00abc ¼ �bI1abs � aI0abs:

(A.48)2(A.55)

Comments on some singularities:
The function I0c(Y) occurs only in the development of W(Y). It must be considered attentively.

In fact, it is undefined; this property does not contradict the function W(Y) itself which appears
only by its derivative in the initial system, (Eqs. (18)–(20)).
Conversely, dW/dY is well defined and W(Y) appears as its undefined integral.
Literally, studying the undefined integral as the limit of a defined integral, it is possible to write

I0c(Y) as the sum of a principal value and an undetermined constant.

I0c Yð Þ ¼ �GE � ln Yð Þ þ undetermined constant. (A.56)

By convenience, the value �GE � ln Yð Þ will be used in this context for I0c Yð Þ, ignoring the
non-determination.
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